Manufacturers and OEMs must understand that there are many sides to machine safety, including standards, regulations, functional requirements, technology, and even unforeseen circumstances.

The last time Ron Bocian visited a manufacturer’s facility to investigate a safety incident involving an Urschel slicer, he found that someone had miswired the machine so that it didn’t provide the level of protection required. It certainly wasn’t the first time something like that had happened.

Bocian, the electrical engineer and risk manager at Urschel Laboratories, a Chesterton, Ind.-based OEM of food cutting technology, knows you can design a machine that is as safe as it can possibly be, but there will always be the fear of the unknown. It’s what Bocian calls reasonable foreseeable misuse. “What’s an operator going to do to get injured that you couldn’t foresee them doing?” he asks.

Urschel has been making slicers and dicers since the 1950s, so the company has an in-depth understanding of how operators will use the product and, therefore, how to safeguard it. But as end users ask for more machine flexibility to deal with changing consumer demands, and as Industry 4.0 initiatives connect more equipment, robots, and devices—thereby creating more moving parts on the manufacturing floor—there are new, unexpected safety risks.

“When someone reinvents the wheel, you don’t know what to expect and how people will misuse the product,” Bocian says.

Making a machine safe is a priority for OEMs and manufacturers alike, as they want to protect employees and they need to comply with the safety regulations of the Occupational Safety and Health Administration (OSHA). But safety measures have not always been executed well because safety is not always easy.

“Safety can be intimidating because the technology can be complicated and challenging to commission, operate, and troubleshoot,” says John Klesk, senior technical marketing manager for safety at Banner Engineering.

And technical troubles aren’t the only cause of safety snafus, of course. The people involved in the process often contribute as well.

“Many machine builders and manufacturers are struggling with the mental hurdle—the mental hurdle being [the assumption] that safety applied to a manufacturing process has the outcome of reducing the efficiency or productivity of the process,” says George Schuster, TÜV-certified functional safety expert and certified functional safety engineer for Rockwell Automation. “That is something that I think is ingrained in manufacturing. It was for me in my manufacturing experience. [I thought] the more safety [that was] put on something, the more downtime and less productivity I’d have. But I learned as a system designer that it is absolutely untrue. Like any tool, it is how you use it and how well it is integrated into the control system and the processes that make the difference.”